Aceite de caja de cambios automática, cuando y cómo cambiarlo

En una caja de cambios automática, de hecho, el aceite no sólo lubrica sino que también activa los accionamientos del embrague y proporciona refrigeración a altas rpm. Cuando el aceite envejece y no se ha cambiado durante demasiado tiempo, pierde viscosidad y la transmisión automática está más sujeta al desgaste e, inevitablemente, es más propensa a fallar.

Ya sea una transmisión automática de doble embrague, un convertidor de par, una caja de cambios robotizada o un tipo de CVT, el mantenimiento es esencial. La rotura de la transmisión automática, de hecho, suele estar asociada a un mantenimiento deficiente y, sobre todo, al descuido del cambio de aceite de la caja de cambios automática.

Es necesario cambiar el aceite de la transmisión automática, independientemente del tipo de caja de cambios. Así que veamos cuándo y cómo cambiar el aceite.

Aceite de la transmisión automática, ¿Cuándo cambiarlo?

No es fácil establecer un rango en términos de kilómetros, mucho depende del estilo de conducción, de las rutas tomadas y de la cantidad de lubricante que requiera esa relación en particular.

En general, los fabricantes de cajas recomiendan cambiar el aceite de la transmisión automática al menos dentro de los 60.000 km y nunca más allá de los 90.000 km. Después de estas horas de uso, el aceite tiende a perder calidad y ya no puede realizar sus funciones.

Cambiar el aceite de la transmisión automática, ¿Cuánto cuesta?

Cambiar el aceite de la transmisión automática implica costos muy variables. Los costos más altos se registran con marcas alemanas como BMW y Mercedes, costos más asequibles para fabricantes como Ford, Citroën y Renault, mientras que Skoda, Volkswagen y Audi se encuentran en la zona media.

Para cambiar el aceite de la caja automática, se recomiendan el procedimiento de «Dialisis», este tipo de realizar el cambio se realiza con una maquina en la que nos asegura el vaciado del 98% del fluido. El cambio por gravedad no es muy recomendable por no asegurar el vaciado total del aceite.

En promedio, el trabajo cuesta 350 euros. El costo puede ser mayor en razón de la cantidad de aceite pudiendo aproximarse a 500 € en cajas de 7 u 8 velocidades.

En Automoción Miraflores disponemos de todos las máquinas que permite cambiar el aceite de la transmisión automática. Antes de realizar un cambio de aceite, recomendamos realizar diagnosis y en algunos casos limpieza. De hecho, sería aconsejable no mezclar los residuos de aceite viejos con los nuevos. Para evitar este gasto, puede limpiar el circuito de la transmisión automática con aditivos especiales.

Es recomendable aprovechar la ocasión para también cambiar los aceite si va equipado de tracción 4 de transfer, Haldex y/o diferenciales.

No te abaniques, revisar el Aire Acondicionado algo más que confort.

¿Cuándo es preciso revisar el aire acondicionado?

Uno de los problemas más frecuentes en nuestro vehículo cuando empiezan a subir las temperaturas es que el sistema de aire acondicionado no consiga enfriar convenientemente el habitáculo. Una de la causas más frecuente por lo que esto sucede es que se haya perdido parte del gas refrigerante del circuito, aunque existen otras causas que pueden afectar a un incorrecto funcionamiento del sistema.

¿Por qué hay que recargar el Aire Acondicionado?

El circuito de aire acondicionado por el que fluye el gas refrigerante es un circuito estanco, por lo que no debiera hacer falta cargar el aire acondicionado ya que el gas refrigerante no se consume con su uso. Sin embargo, muchas veces debe reponerse el gas debido a que los coches son mecanismos sujetos a continuas vibraciones (incluso golpes), cambios bruscos de temperatura, dilataciones, vibraciones, en este circuito existen numerosas juntas que con el tiempo van disminuyendo su eficacia.

La constancia es fundamental para un buen mantenimiento

Los vehículos con un sistema de aire acondicionado deberían ser revisados al menos una vez al año por un profesional.

Cada año el sistema de climatizador puede perder hasta el 8% de su refrigerante. Además, hay piezas de desgaste por el uso que necesitan revisión. Por ejemplo, el filtro deshidratador. Este es responsable de extraer la humedad del refrigerante circulante y de reducir el desgaste mecánico. Su vida es limitada en el tiempo y cada dos años aproximadamente habría que reemplazarlo.

A principios de la primavera, antes de que haga mucho calor, es el mejor momento para revisar el aire acondicionado y todos los componentes relacionados.

Estación de reciclaje y recarga

Consejos útiles

Para evitar los olores desagradables del sistema, es recomendable apagarlo unos minutos antes de llegar al destino. De esta forma evitamos la humedad que es el ambiente preferido de las bacterias y hongos que causan los olores extraños al volver a conectarlo.

Aunque el filtro del polen parezca limpio, conviene cambiarlo cada año, pues las bacterias microscópicas anidan en él y conviene empezar de cero antes de la temporada fuerte de alergias en primavera.

También aprovechando la visita al taller aconsejamos realizar un tratamiento de desinfección del sistema de conductos y evaporador con Ozono.

Gas refrigerante para aire acondicionado: tipos

Si bien las fugas del gas refrigerante que fluye en los sistemas de aire acondicionado de los vehículos pueden deteriorar el aire acondicionado, no son el único elemento que influye en el deterioro del sistema. Una avería mecánica o eléctrica puede mermar la capacidad de climatización, o provocar que el habitáculo no se enfríe lo suficiente.

No todos los gases refrigerantes son iguales. Desde finales de los noventa se han estado utilizando gases fluorados como el R134a, con fama de muy contaminante. Supera al dióxido de carbono nada menos que 1.430 veces (según su GWP/PCA o potencial de calentamiento atmosférico).

Su contribución al cambio climático se viene advirtiendo desde 2002. Pero fue una directiva de la Unión Europea (UE) la que comenzó a vetarlo en 2006, debido precisamente a su impacto medioambiental: absorbía demasiada energía, aunque fuese poco tóxico e inflamable.

Fue entonces cuando entró en escena el conocido como R1234-YF, tetrafluoropropeno llamado a sustituir al R134a. Pese a sus debilidades -es un gas inflamable: así se acredita en sus etiquetas-, se ha impuesto como realidad en los vehículos fabricados a partir del 1 de enero de 2018, cuando entró en vigor la obligatoriedad de su utilización. Solo es compatible con sistemas de climatización diseñados para este gas.

Los talleres homologados y certificados deben de tener autorización para manipular estos tipos de gases, el 134 A es muy perjudicial para la atmosfera y el 1234 YF

Errores más habituales

PONER EL AIRE AL MÁXIMO

Encender el ventilador del aire acondicionado del coche al máximo nada más acceder al interior (y después de que el vehículo estuviese aparcado al sol durante varias horas) es uno de los errores más frecuentes que cometen muchos conductores. Antes de encender el aire a una potencia baja-media, lo conveniente es abrir las puertas del coche y bajar las ventanillas para ventilar un poco y empezar a bajar la temperatura del interior (un automóvil aparcado al sol durante horas en pleno verano puede alcanzar temperaturas de 60 grados o más).

BOTÓN DE RECIRCULACIÓN

Activar el botón de recirculación del aire acondicionado nada más acceder al vehículo lo único que puede favorecer es que los cristales se empañen por el propio cambio brusco de temperatura (entre el interior y los “grados de menos” que aporta el propio aire).

Según la DGT y según los técnicos de Seat, lo más recomendable es mantener seleccionada la opción Auto del sistema del aire acondicionado, ya que permite que «el flujo del aire se autorregule, sea más homogéneo y se haga un uso más eficiente».

NO ACTIVAR EL AIRE

No activar el aire en ciertos momentos del día en verano porque “hace fresquito” (por la mañana o durante la madrugada) es un error. Según los expertos, aunque la temperatura exterior no sea tan sofocantes, en verano siempre es conveniente activar aunque sea de forma suave el sistema del aire acondicionado del coche (se evitará que se empañe cuando se eleve la temperatura exterior).

DIFUSORES MAL ORIENTADOS

La mayoría de las veces no es una cuestión de temperatura, sino de la dirección en la que circula el aire dentro del habitáculo. Para conseguir un reparto adecuado del aire, desde el Centro Técnico de Seat se indica que «los difusores tienen que estar enfocados hacia arriba, no hacia la cara«. Con este gesto se consigue que el aire se reparta por todo el coche y llegue a todos los pasajeros de forma uniforme.

MAL MANTENIMIENTO DEL SISTEMA DEL AIRE ACONDICIONADO

Al igual que el aceite, los neumáticos o el líquido de frenos, el sistema de climatización también necesita un mantenimiento específico. Por este motivo, según los expertos, sería conveniente realizar una carga del aire cada dos o tres años, además de cambiar los correspondientes filtros cada 15.000 o 20.000 kilómetros, según las indicaciones genéricas establecidas en los libros de mantenimiento oficiales de los distintos fabricantes de coches.

Coche Autónomo

Todavía faltan años para el lanzamiento en cadena de automóviles autónomos, las principales firmas tecnológicas como las de automoción han coincidido en la idea de que los vehículos ofrezcan servicios y características desarrolladas a través de las mismas redes de datos que emplean los smartphones, de manera que estén conectados a través de redes 5G o superiores.   

A pesar de contratiempos, por otra parte, esperables, como varios atropellos de peatones, desde hace tiempo la discusión sobre la llegada del coche autónomo ya no se centra en si se hará realidad, sino cuándo. Mientras para algunos ya están prácticamente aquí, para otros habrá que esperar todavía más tiempo. Desde fuera da la sensación de que el escepticismo es mayor entre los fabricantes de coches, precisamente los que tienen más que perder en dicho escenario. 

 Conducción autónoma 

¿Qué pasará con los pilotos cuando los vehículos se conduzcan solos? Algunas empresas visualizan un futuro en el que los ocupantes de los automóviles podrán elegir entre conducción manual o autónoma 100%, pudiendo llegar a poder implantar porcentajes dependiendo de elecciones particulares o de programación. 

El pionero a estas alturas de la conducción autónoma es la estadounidense Tesla, que ya presentó su software de Auto Pilot. Todos los coches nuevos de la marca vienen con el hardware incluido y recibirán actualizaciones de software en funciones de conducción automática en el futuro.  

 El coche autónomo desarrollado por Google se llama Waymo y no necesita la red de redes para circular con toda seguridad por las carreteras. Los vehículos de prueba de Google pueden conducir durante largos periodos sin conectarse a la red «porque todos los sistemas necesarios están a bordo y solo abre una conexión para recibir informaciones concretas como, por ejemplo, el estado del tráfico» 

Honda, presentó el Augmented Driving, una tecnología que ofrece más de ocho modos de conducción entre manual y autónomo a través de un volante inteligente. 

También BMW contempla el concepto de una cabina futurista, con amplios asientos reclinables y un parabrisas con realidad aumentada que incluye información sobre el recorrido trasladando toda la información a una cúpula de cristal que proyectará en 3D. 

Pero todas las marcas en mayor o menor medida y a corto medio plazo se plantean el coche semiautónomo como una de las principales opciones de venta. 

La realidad es que en un futuro los taxistas vayan desapareciendo de forma paulatina, una realidad es que las grandes ciudades a pesar de su crecimiento se plantean ir reduciendo el número de licencias, pero no se queda ahí la cosa. El coche, lógicamente, no es el único vehículo susceptible de ser autónomo. Pensemos en furgonetas, camiones o autobuses, donde el posible sobrecoste inicial de la tecnología autónoma sería amortizado más rápidamente. De hecho, compañías como Tesla o Google están trabajando en ello y grandes empresas de distribución y ventas online como MRW y Amazon están dedicando partidas importantes de su presupuesto a este concepto. 

Este apartado de transporte comercial y logística presentaría unas cifras de impacto en el sector muy drásticas.  Según un informe de International Transport Forum “los camiones automatizados podrían reducir la demanda de transportistas entre un 50 % y un 70 % en los Estados Unidos y Europa antes de acabar 2030, con la consiguiente desaparición de hasta 4,4 millones de empleos sobre una previsión de 6,4 millones de profesionales del transporte por carretera.” 

Por hablar de cifras, en Europa y antes de acabar 2040, se habla de la desaparición de hasta 4,4 millones de empleos sobre una previsión de 6,4 millones de profesionales del transporte por carretera  

Otro los principales problemas para los fabricantes de automóviles estriba en que sus futuros clientes, las generaciones más jóvenes, se han convertido en futuros usuarios asiduos de este tipo de servicios, que se verán reforzados con la llegada de las flotas de vehículos autónomos y economía colaborativa en el sector de transporte urbano de la mano de bicicletas y patinetes eléctricos, en medias y largas distancias compartiendo coche con otros viajeros desconocidos, todo esto a través de App y plataformas de colaboración. 

El presente, nos indica que a pesar de que la tecnología de cámaras, sensores y radares han avanzado mucho, dista de que la recreación del entorno sea perfecta y, sobre todo, de que se interprete debidamente. 

El incremento de la seguridad vial será la principal gran ventaja de los coches autónomos ya que eliminarán por completo el error humano, presente en más del 90% de los accidentes de tráfico. Por otro lado, el consumo eficiente de energía y la reducción de emisiones se atisba como otro de los puntos a favor de estos vehículos, se da por seguro que los coches autónomos deberán utilizar una energía “limpia” basada en la pila de hidrógeno. Tampoco debemos olvidar el aspecto social, ya que podrían viajar solas personas con discapacidades tales como la ceguera. Incluso realizarían tareas por sí solos, y podremos programar el coche para que acuda a buscarte al trabajo o acercarse a la tienda a recoger la compra. Esto se transmite en un ahorro considerable de tiempo para los futuros propietarios de estos coches. 

Otros de los planteamientos del coche autónomo este sería un lugar de ocio o trabajo, permitiendo trabajar al conductor durante el trayecto, en relación al ocio se transmitiría en poder realizar diversas actividades de forma individual o en grupo en trayectos largos. 

Esperemos que la implantación del coche autónomo 100% sea para poder beneficiarnos de un ocio a disfrutar con nuestros familiares y amigos y no sea una dependencia más de las maquinas que no obligue a desarrollar más trabajo para mantener el estatus. 

Lo que ahora ves futuro será una realidad a muy corto plazo, todos los coches nuevos de hoy en día incorporan sensores de imagen, proximidad que pueden conseguir en un momento dado corregir la trayectoria e incluso detener el coche ante el peligro de colisión. 

Pero ¿Esto terminará con nuestra privacidad y autonomía a la hora de planificar nuestro ocio y vacaciones? Posiblemente SI, pero es el precio que debemos de pagar por la tecnología de consumo vanguardista. 

Higienización por Ozono

La defensa contra el Covid 19
A fecha de hoy las soluciones que se conocen frente al Covid 19 son defensivas: aislarnos, no exponer la piel ni las mucosas, buscar una vacuna a corto plazo que nos impida contagiarnos o un medicamento lo más eficaz posible una vez contagiados. La única opción ofensiva, es decir, aquella que intenta acabar activamente con el coronavirus antes del contagio, que maneja la O.M.S. frente al Covid-19 es la de desinfectar a base limpieza con productos algunos de base alcoholica, Amonio Cuaternario, Cloruros, Hipoclorito Sodico (lejia), todos ellos con alto porcentaje oxidante y desinfectante. Estos compuestos deben de administrarse de forma liquida o pulverizados pero con altas medidas de protección cuando son administrados en grandes cantidades, teniendo muy en cuenta que pueden reaccionar de forma muy peligrosa al mezclarse con otros compuestos que se consideran tambien desinfectantes. La mayoria conocemos las consecuencias de cuando se mezcla amoniaco y lejía, esto produce una reacción química que genera un gas llamado Cloramina (NH2Cl), que es altamente tóxico. Y cuando éste entra en contacto con nuestras membranas mucosas, se descompone para producir ácido clorhídrico, además de radicales libres.


Pero una de las ultimas soluciones que se están aplicando como novedosas a pesar de llevar décadas funcionando porque es mucho menos conocida, me estoy refiriendo a la desinfección con ozono. Según la O.M.S. (Organización Mundial de la Salud), el ozono es el desinfectante más potente contra todo tipo de microorganismos. Su poder de desinfección es al menos, diez veces mayor que el del cloro, siendo eficaz en un 99% en la eliminación de los virus, pero también en la de bacterias, hongos, esporas, protozoos.
Otra de las principales ventajas es que es mucho menos corrosivo y contaminante que la desinfección con los componentes mencionados anteriormente. A esto debemos sumarle que es más rápido, necesitando menos tiempo de contacto con los microorganismos que otros desinfectantes para realizar la purificación, y actúa a una menor concentración.


¿Qué es el Ozono?
Para que te hagas una idea de su alcance, el ozono es utilizado con éxito para eliminar, entre otros muchos, incluso el virus del Ébola en aire.
El ozono es un constituyente natural del aire que respiramos. Es un gas azulado, compuesto por tres átomos de oxígeno (O3), altamente oxidante debido a la inestabilidad de su estructura molecular y tóxico a concentraciones elevadas. Puede tener efectos corrosivos sobre materiales y, a determinadas concentraciones, efectos irritantes sobre las mucosas de los seres vivos. Por esta razón debe ser administrado en medicina de forma experimentada, en lo que se refiere a la desinfección tiene que ser producido con aparatos totalmente homologados (CE) para este fin.


El Ozono esta compuesto por tres moleculas de Oxigeno pero con una alta inestabilidad en lo que a moléculas se refiere, por lo que al poco tiempo vuelve a su estado normal es decir O2, por explicarlo de forma rápida una vez administrado en un local, hogar o coche su efecto es inmediato pero se debe de respetar el tiempo recomendado por el fabricante para poder entrar en el recinto, estamos hablando de que en un recinto con gran tratamiento no es superior en el peor de los casos (sin nada de ventilación, sin actuación de rayos U.V.) a 20 o 30 minutos. En el caso de una vivienda debia de ser no más de 15 minutos y un vehículo de 5 a 10 minutos.


Como actua el Ozono como desinfectante
El ozono como ya hemos explicado es de los compuestos con mayor capacidad oxidante que se conoce, muy superior al cloro, lo que quiere decir que tiene mayor eficiencia biocida. De hecho, el ozono es por lo menos diez veces más potente que el cloro como desinfectante.
El ozono, formado por tres átomos de oxígeno O3, es uno de los más potentes oxidantes que se conocen, por lo que es capaz de eliminar, la mayoría de virus, también un amplío rango de otros microorganismos contaminantes presentes en el aire, sin olvidar la eficacia en hacer desaparecer los olores desagradables.


Según la OMS, el ozono es el desinfectante más eficiente para todo tipo de microorganismos. En informe de la OMS se detalla que, con concentraciones de ozono de 0,1-0,2 mg/L.min, se consigue una inactivación del 99% de rotavirus y poliovirus, entre otros patógenos estudiados, pertenecientes al mismo Grupo IV de los Coronavirus.
Combiene recordar que el OZONO es un componente natural del aire limpio y seco, como también lo es el Nitrógeno, Oxígeno, Argón, etc.
El OZONO destruye por oxidación las bacterias, virus y gérmenes en general, convirtiendo los ambientes contaminados, en oxigenados, respirables y descontaminados.


En que cantidades y para que se puede emplear el Ozono
Las cantidades limites a administrar estan pautadas por O.M.S. pero en cualquiera de los casos estamos hablando de cantidades muy altas y durante largos poeriodos de tiempo, como ya he comentado es muy inestable y sus moleculas se desporenden en poco tiempo pasando a ser O2 y por tanto para nada perjudicial. Cualquier bactericida o desinfectante es menos eficaz y mucho más peligroso, todos conocemos los perjuicios del cloro en grandes cantidades y tan necesario en el uso diario del agua de boca y de uso ludico.


Sus usos no están limitados a exclusivamente un espacio concreto. Muestra de ello son, por ejemplo, los generadores de ozono destinados al tratamiento del agua. El tratamiento y desinfección del agua pueden ser utilizados para la potabilización, piscinas, balnearios y spas, aguas residuales, y un extenso etcétera que se extiende incluso a la alimentación.
Dentro de este último espacio, el agua ozonizada se utiliza tanto para limpiar los utensilios de cocina como para los propios alimentos, ya que al poseer un alto poder desinfectante y no contener productos químicos en la composición, resulta el aliado perfecto para terminar con los virus y bacterias que puedan estar presentes.
Un poco más alejado, pero aún dentro de este ámbito, el agua tratada con ozono también tiene cabida en el sector agrícola. Puesto que no deposita residuos químicos en la tierra y el ozono se descompone en oxígeno cuando ha cumplido su función desinfectante, resulta respetuoso con los cultivos y con el medio ambiente.


Que aplicación tiene en el mundo del mantenimiento del Automóvil
El ozono se ha puesto de moda tristemente a causa del Covid 19 pero no sólo es capaz de destruir virus, sino todo un extenso «catálogo» de mircooroganismos presentes en el aire, además de la aparición de malos olores que éstos acaban produciendo, ya que actúa sobre todos ellos a varios niveles a través de la oxidación directa de la pared celular o la despolimerización.


Un equipo generador de ozono es utilizable en todos los ambientes interiores como coches, minibús, autobús, caravanas, etc.
De rebote, se convierte ahora en un aliado esencial contra la lucha del Coronavirus, sin olvidar que también destruye otros microorganismos menos conocidos pero igualmente dañinos para las personas.
Con una concentración de ozono de entre 0,1-0,2 mg/L.min, se consigue una inactivación del 99% de rotavirus y poliovirus, entre otros patógenos estudiados pertenecientes al mismo Grupo IV de los Coronavirus.
También está totalmente demostrado que el ozono es al menos diez veces más potente que el cloro como desinfectante y según la OMS, es el desinfectante más eficiente para todo tipo de microorganismos. De hecho, el ozono viene siendo utilizado como biocida desde hace décadas, como así lo demuestran las fechas de los numerosos estudios que existen al respecto.
La aplicación de ozono en una zona concreta, de un espacio cerrado como un vehículo de servicio público, garantiza la desinfección de éste, así como la eliminación de olores desagradables, dejando un ambiente seguro, fresco y agradable.


Otros usos del Ozono en limpieza
Para desinfectar y esterilizar los QUIROFANOS, el OZONO, que produce el efecto deseado, AIRE FRESCO y PURIFICADO, (sin Bacterias, Virus, Gérmenes, Hongos); sin Residuos el OZONO después de actuar deja oxígeno, que aumenta la sensación de limpieza que debe imperar en los Hospitales. Además, No enmascara los olores, los elimina.
Desinfecciones de salas de espera y habitaciones de centros hospitalarios y geriatricos, reduciendo el tiempo de desinfección y el uso de productos quimicos, consiguendo rentabilizar tiempo y costes económicos.


Limpiezas de cocinas industriales y restauración, además del uso para eliminar olores en camaras frigoríficas de pequeñas y grandes dimensiones.

¿El ozono es cancerígeno?
NO. El ozono es únicamente un agente irritante (Xi), según la clasificación de su ficha toxicológica, Esta clasificación como agente irritante se refiere exclusivamente a sus concentraciones en aire, es decir, a los problemas derivados de su inhalación, que dependen de la concentración a la cual las personas están expuestas, así como del tiempo de dicha exposición.
De hecho, la normativa emitida por la OMS, en la que se basa el resto de la normativa, incluidos los límites de exposición profesional para agentes Químicos en España VLA (Valores Límite Ambientales), adoptados por el Instituto Nacional de Seguridad e Higiene en el Trabajo. (Ministerio de Empleo y Seguridad Social), recomiendan una concentración máxima de ozono en aire, para el público en general, de 0,05 ppm (0,1 mg/m3) en exposiciones diarias de 8 horas.
Por lo tanto, el ozono no es de ningún modo cancerígeno ni mutagénico ni está clasificado como tal.

INFORMACIÓN DGA SOBRE OZONO

La Pila de Hidrógeno

El hidrógeno es el elemento químico más común en la naturaleza y se puede utilizar como vector energético para mover un coche. Hay varias maneras de usarlo y las marcas han experimentado durante años con ellas, pero la más extendida y la que parece tener más futuro es la pila de combustible

.

Hoy vamos a explicar en qué consisten las motorizaciones de hidrógeno y, sobre todo, cómo funciona una tecnología que está acaparando cada vez más atención de las marcas por su potencial sostenibilidad.

Cómo funciona un coche de hidrógeno

La principal diferencia de un coche de hidrógeno es que, si bien es un coche eléctrico pues son exclusivamente los motores eléctricos los que se encargan de hacer girar las ruedas, su funcionamiento no es igual. En un coche de pila de combustible se va generando la electricidad a medida que el coche la necesita.

En lugar de almacenar la energía en baterías acumuladoras, éstos utilizan una pila de combustible, algo así como una central energética portátil. En un coche de combustión la energía se obtiene al quemar los derivados del petróleo, en los coches de hidrógeno se procesa el hidrógeno para producir electricidad a demanda.

El hidrógeno (H₂) a presión se almacena en unos tanques específicos. Este elemento se canaliza hacia la pila de combustible, donde se añade el oxígeno del aire ambiental para producir electricidad y, como producto residual, se obtiene agua (H₂O). Porque, sí, los coches de hidrógeno tienen tubo de escape, pero no contaminan, sólo expulsan vapor de agua.

La electricidad generada en la pila de combustible se destina a una batería, como en un coche eléctrico, la cual es la encargada de repartir la energía al o a los motores eléctricos de los que disponga el coche. También se puede destinar electricidad bajo demanda directamente de la pila de combustible a los motores eléctricos.

El sobrante de electricidad acumulado en la batería más la recuperación de energía conseguida a través de la frenada regenerativa se guardan en la batería, permitiendo a las mecánicas de pila de combustible funcionar incluso sin estar consumiendo hidrógeno.

La problemática del coche de hidrógeno

Aunque efectivamente el hidrógeno sea uno de los elementos químicos más representativos de todos los que componen la tabla periódica por su presencia habitual, su obtención es de todo menos sencilla.

En condiciones de temperatura y presión ambiental, el hidrógeno es un gas totalmente inocuo, pero el hidrógeno no existe por sí mismo, aislado, como elemento recolectable. No hay bolsas de hidrógeno en el subsuelo ni crece de los árboles. Su presencia va ligada a otros elementos de los que necesitamos separarlo: por ejemplo el agua, H₂O, está compuesta por dos átomos de hidrógeno y uno de oxígeno.

Para aislar el hidrógeno (H₂) hay que recurrir a un proceso de gasificación denominado electrólisis por el cual se descompone el agua a través de la electricidad. Se requieren ingentes cantidades de energía para obtener por un lado oxígeno (O) y por otro el hidrógeno (H₂) puro para proceder a su almacenamiento.

El hidrógeno también puede obtenerse mediante reformado de hidrocarburos, mediante gasificación de hidrocarburos o biomasa, por producción biológica de bacterias o algas a pequeña escala y mediante ciclos termoquímicos (con energía nuclear o solar) a gran escala.

Otra de las cuestiones más complicadas en lo referente al hidrógeno es su almacenamiento. Se trata de un gas extremadamente volátil con una densidad de tan solo 0,0899 kg/m³, por lo que mantener a este gas contenido a presión dentro de depósitos implica añadir elementos muy pesados que lo puedan retener en su interior. Con la tecnología actual es prácticamente imposible garantizar la ausencia de pérdidas, principalmente por las válvulas de llenado/vaciado.

Adicionalmente está el problema del repostaje: no es sencillo. En España tenemos un precaria red con sólo siete hidrogeneras actualmente: dos en Huesca, una en Zaragoza, una en Madrid, una en Albacete, una en Puertollano y una en Sevilla. En 2017 se estimaba que pudiera haber 20 hidrogeneras en 2020, pero la realidad es muy diferente.

Tanto por lo incipiente de la tecnología de pila de combustible como por la escasa demanda, el resultado es que actualmente los coches de hidrógeno son una realidad marginal. Al menos de momento.

AdBlue ese aditivo desconocido

¿Sabes que la mayoría de los diésel modernos emplean la tecnología AdBlue? ¿Conoces que esta tecnología requiere la recarga de un nuevo aditivo y ciertas peculiaridades en su mantenimiento? Las últimas normativas de emisiones han propiciado que los fabricantes tengan que idear sistemas más sofisticados para reducir las emisiones contaminantes, especialmente en los diésel. Sistemas de los que el conductor debe ser consciente a la hora de llevar a cabo el mantenimiento de su automóvil.

¿Llevan AdBlue todo los diesel de última generación?

La gran mayoría. La obligación a los fabricantes de conseguir que sus motores de gasóleo superen la Euro VI sin necesidad de este aditivo depende de su tecnología. Hemos visto como algunos motores de baja cilindrada, en turismos pequeños, no requieren de un sistema AdBlue y han superado las normativas de emisiones hasta ahora con otro tipo de catalizador que no requiere de aditivos – los denominados Trampa NOx – que sintetizan buena parte de sus emisiones.

¿En qué consiste el sistema AdBlue?

El AdBlue es esencialmente un aditivo y como tal requiere de un sistema que lo suministre y haga uso de él. Este aditivo no se mezcla con el combustible, sino en la salida de los gases de escape, junto con otros catalizadores  y próximo a sistemas de reducción de emisiones como el filtro de partículas. En ese dispositivo el AdBlue se pulveriza para lograr un proceso químico por el cual los gases a altas temperaturas provocan que el AdBlue genere amoníaco y este descomponga las moléculas de NOx en Nitrógeno y H2O (agua), que lógicamente son menos nocivos para la salud y el medio ambiente.

Composición del AdBlue

AdBlue es la denominación comercial de una solución acuosa de Urea en un porcentaje de aproximadamente el 32,5%. La urea es un compuesto químico presente, sobre todo, en la orina. El AdBlue no es tóxico, pero sí corrosivo. Con lo cual no correremos peligro al manipularlo, pero debemos tener ciertas precauciones y procurar que la carrocería de nuestro coche no entre en contacto con el líquido y limpiar cuidadosamente cualquier derrame accidental.

Cuando reponer AdBlue

La mayoría de  fabricantes optan por diseñar sus motores para que los periodos de recarga de AdBlue coincidan con los periodos de mantenimiento, esa máxima no siempre se cumple, o incluso nuestro propio estilo de conducción podría provocar que el depósito se agotase antes de tiempo. Todo coche que utilice AdBlue debe incorporar un sensor que detecte que el aditivo se ha agotado y nos avise para realizar la conveniente recarga.

Es importante conocer el funcionamiento de nuestro coche, pero generalmente el avisador de bajo nivel de AdBlue no es tan urgente como el de bajo nivel de combustible, como mínimo deberíamos tener margen para recorrer cientos de kilómetros.

Lo que pasa cuando se agota el AdBlue

Lo que sí debemos saber es que, una vez el depósito de AdBlue se ha agotado, nuestro coche puede entrar en modo fallo  o emergencia,  incluso no arrancar el motor, hasta que recarguemos de nuevo el AdBlue de nuestro diésel.

En el momento en que el nivel de AdBlue es bajo, y con margen más que suficiente, la centralita del coche enviará una advertencia que nos recomendará recargar el aditivo. Si hacemos caso omiso de la advertencia y continuamos circulando hasta agotar por completo el depósito, nuestro coche entrará en modo fallo y dejará de funcionar.

La recarga de AdBlue

Generalmente, los fabricantes sitúan la boca de carga del depósito de AdBlue junto a la boca de carga del depósito de combustible (fácilmente identificable por el tapón azul). Dado que desde hace años el AdBlue es un aditivo ampliamente utilizado en vehículos industriales y de transporte, no tendrás ningún problema en encontrar un surtidor de AdBlue en una gasolinera cercana.

 

ADAS ¿Que es y para que sirve?

Los vehículos modernos equipan cada vez más sistemas de asistencia a la conducción, que incrementan de forma notable la seguridad activa además de suponer un avance importante hacia una conducción completamente autónoma. Englobados bajo las siglas ADAS (Advanced Driver Assistance Systems), estos sistemas van desde el frenado autónomo de emergencia con detección de peatones, la detección de ángulo muerto o el sistema de detección de fatiga, a la alerta de cambio involuntario y de carril, el mantenimiento activo en el carril, la alerta de tráfico trasero cruzado o el reconocimiento de señales de tráfico principalmente.

Según DGT, si todos los automóviles llevaran sistemas ADAS, se reduciría el riesgo de siniestro en España un 60. En esta línea, hace un tiempo Pere Navarro, director de Tráfico, abogó por que el Asistente de Velocidad Inteligente (ISA), el sistema de asistencia a la conducción que previene al conductor de exceder los límites de velocidad, acabe siendo obligatorio en los vehículos, aunque a mi modo de entender no creo que se implante al 100%.

Los dispositivos ADAS necesitan de sensores que vean todo lo que sucede alrededor del coche y recojan esa información, para luego actuar en consecuencia y ayudar al conductor a tomar decisiones con la mayor seguridad y rapidez posible. Solo la combinación de la información aportada por todos ellos (denominada fusión de sensores) por parte del ‘cerebro’ del automóvil, produce un reconocimiento fiable del entorno.

Cámaras

La inmensa mayoría de las cámaras de los sistemas ADAS están montadas en el parabrisas. Tienen la ventaja de adaptarse a diferentes tareas, reconocer colores y tener un amplio rango de 50 a 500 metros, y de hasta 180º; y las desventajas de ofrecer problemas de visión en condiciones climatológicas adversas o cuando están sucias, y de estar sujetas a ilusiones ópticas naturales. La cámara solo ‘entiende’ lo que ha sido previamente clasificado en su software y solo mide ángulos, todo lo demás es calculado.

Los sensores de vídeo más modernos son ‘estéreo’, con un rango de medición 3D de más de 50 metros. Estas cámaras registran los objetos especialmente, determinando su distancia, y reconocen espacios vacíos, gracias a diferentes algoritmos y el uso de la inteligencia artificial (IA). Con todo ello, son capaces de ofrecer un reconocimiento fiable de peatones, animales y objetos; y de leer letras y números en las señales de tráfico.

Cuando se sustituye un parabrisas, hay que desmontar las cámaras del cristal roto y montarlos en el nuevo. Una vez instalados, estos sistemas han de ser recalibrados para asegurar que funcionan con la máxima precisión y proporcionan la información correcta a los sistemas de seguridad (calibración ADAS).

Sensores de ultrasonidos

Son muy fiables para el reconocimiento del entorno más cercano (de hasta seis metros) y a bajas velocidades. Funcionan con la técnica del sonar (como los murciélagos), enviando impulsos ultrasónicos que rebotan en los obstáculos y cuyos ecos son analizados para obtener información. Se emplean, sobre todo, para los asistentes de parquin. Estos sensores ya utilizados desde hace tiempo y van montados en los paragolpes.

Sensor de radar

El radar sirve para localizar objetos estáticos y en movimiento. Funciona enviando ondas de radar, que rebotan en los objetos del entorno del vehículo. Midiendo la velocidad relativa y la distancia de los objetos con el efecto Doppler, el retraso de los cambios de frecuencia entre la señal emitida y la recibida, y la amplitud y la fase de las señales, se determina la velocidad relativa, distancia y posición de los objetos que se encuentran en los alrededores del automóvil.

El radar tiene un alcance de 300 metros y un rango de 360º. Sus ventajas son su fiabilidad, que no le influyen las inclemencias meteorológicas y que mide todos los valores relevantes en uno (ángulo, distancia, velocidad, parámetros del material), sin necesidad de cálculos. En el lado adverso, no reconoce colores y ofrece un reconocimiento limitado de las formas. Suele instalarse en la parrilla delantera del vehículo.

Sensores láser LIDAR

Es uno de los sistemas más importantes de ayuda a la conducción, (Light Detection and Ranging, detección de luz y rango, por sus siglas en inglés) y se trata del único sensor que mide con precisión en 3D (distancia, posición y altura), con un alcance de alrededor de 200 metros. Sus desventajas son su elevado precio, un alcance reducido en condiciones de niebla, lluvia o cuando está sucio, que no reconoce colores –aunque sí materiales- y que tienen unas estrictas restricciones al está regulados legalmente por seguridad ocular. Actualmente muy pocos automóviles tienen la opción de montar este sistema, que se irá popularizando a medida que los coches ofrezcan una conducción cada vez más automatizada. Si digo que es la cámara que lleva en el techo el coche de Google que graba por las calles todos sabemos a que me refiero.

 

 

 

Hidrogeno «Cero Emisiones»

La Unión Europea ha fijado unos ambiciosos objetivos para reducir las emisiones contaminantes y de efecto invernadero y cumplir con el acuerdo climático de París. Los objetivos fundamentales para el año 2030 son reducir al menos en un 40% las emisiones de gases de efecto invernadero (en relación con los niveles de 1990), conseguir una cuota de al menos 27% de energías renovables y al menos 27% de mejora de la eficiencia energética.

Y para lograrlos es fundamental disminuir la dependencia de los combustibles fósiles a favor de energías obtenidas de fuentes renovables. Y aquí es donde el hidrógeno está llamado a jugar un papel muy importante. Se calcula que si se utilizasen de manera efectiva los sistemas de hidrógeno, se podrían evitar solamente en España más de 15 millones de toneladas anuales de emisiones nocivas, además de la creación de 227.000 puestos de trabajo antes del año 2030. Pesa ello, el hidrógeno, uno de los elementos más abundantes del universo, sigue siendo un gran desconocido.

Es un gas incoloro e inodoro, prácticamente inexistente en su forma molecular. Sin embargo, como compuesto, lo hay en cantidades prácticamente incalculables. Entre los compuestos del hidrógeno el más frecuente, de lejos, es el agua. Y el agua, junto al viento, son precisamente los dos elementos con los que se puede lograr el que para muchos el que se postula como el combustible del futuro.

Según Miguel Peña, secretario de la Asociación Española del Hidrógeno (AeH2), «el hidrógeno es clave en la transición energética, ya que es una forma muy eficiente de acumular energía y mucho más versátil que la electricidad».

Según explica, actualmente las platas termo solares y eólicas son capaces de producir excedentes de electricidad que no se pueden aprovechar, mientras que el hidrógeno «la podemos almacenar durante meses, y cuando haga falta electricidad volver a generarla mediante una pila de combustible».

 

Aunque el hidrógeno puede producirse mediante el proceso de reformado del gas natural, nafta, fuel pesado o carbón, para producir hidrógeno podemos recurrir a una fuente de energía renovable, como puede ser la solar o eólica, y agua. Mediante un proceso de electrólisis la molécula de agua se divide en oxígeno e hidrógeno. Y este último ya se puede almacenar. Para recuperar la electricidad el proceso es el inverso, ya que el hidrógeno, combinado con el oxígeno del aire, libera la energía química almacenada en el enlace H-H, generando solamente vapor de agua como producto de la combustión.

aeH2

La industria química de producción de amoníaco, metanol y refinado de petróleo consume aproximadamente el 66% de la producción anual de H2, estimada en 35 millones de toneladas métricas (MTm). El resto de la producción se consume en otros procesos industriales. El hidrógeno se considera como un combustible ideal, dado que no emite gases de efecto invernadero durante la combustión. La utilización del hidrógeno en las celdas de combustible, particularmente en el sector del transporte, permitirá en el futuro diversificar el suministro energético, aprovechar los recursos domésticos y reducir la dependencia de la importación de petróleo.

Respecto al transporte, además de camiones con tanques a presión, en la actualidad las líneas de gas natural son muy efectivas, y a través de ellas se puede distribuir el hidrógeno de forma segura y sin necesidad de grandes modificaciones. Según Miguel Peña, se prevé que en el año 2030 el hidrógeno y su industria genere más de 200.000 puestos de trabajo, contribuya a la reducción de unos 15 millones de toneladas de CO2, y estén en circulación un total de 140.000 vehículos de pila de combustible

A la hora de repostar, el sistema es similar al que utilizan los coches de gasolina, GLP o GNC. Mediante una manguera rellenamos el depósito de hidrógeno, con un precio (en Alemania) de unos 10 € por kilo. En la práctica esto quiere decir que si un coche diésel gasta una media de 0,15 €/km, en el caso del coche de hidrógeno este coste es similar, de unos 0,20 €/km. La única pega en España es que tan solo existen seis puntos de recarga en todo el territorio peninsular.

Más información de producción Hidrógeno » Producción a partir de Gas Natural»

Fuente ABC Motor

Hibrido si, Hibrido no

El coche híbrido es una de las grandes evoluciones de la industria del automóvil y una tendencia cada vez más al alza en el mercado de venta de vehículos. Muchos hablan de estos vehículos como los coches del futuro, sin embargo, ya pueden considerarse como toda una realidad.

Los vehículos híbridos se distinguen por combinar en su movimiento un motor y una batería (de ahí su denominación de híbridos), suponiendo un ahorro de costes en combustible y mantenimiento, así como menores emisiones Co2. No obstante, el usuario sigue albergando dudas con respecto a ellos. ¿Debo repostar un coche híbrido?, ¿Que autonomía tiene su batería eléctrica? ¿Es más caro comprar un híbrido que un coche con motor de combustión tradicional? Intentaremos resolver alguno de tus interrogantes en este post.

Los motores de un coche híbrido

La principal cualidad de un vehículo híbrido está en su motor. Una combinación de combustión interna con motores eléctricos capaces de trabajar en serie o en paralelo. Según sea la unión de sus motores y su manera de funcionar es posible establecer una clasificación de coches híbridos.

  • Híbridos en serie. En ellos el motor eléctrico impulsa es quien impulsa al vehículo, mientras que el motor de combustión, ya sea gasolina o diésel, tiene por finalidad mover un generador que cree electricidad para cargar la batería y que esta sea remitida al motor eléctrico.
  • Híbridos en paralelo. En este tipo de híbridos, los dos motores, tanto de combustión como eléctricos cuentan con conexión con las ruedas y pueden trabajar juntos o por separado. Aunque es el motor de combustión quien suministra la energía principal para el movimiento. El motor eléctrico permanece a la espera de aportar potencia extra al motor de combustión. Los híbridos en paralelo son los más comunes del mercado y son especialmente importantes por sus bajas emisiones y consumos.
  • Híbridos combinados. Utilizan los dos modelos anteriores, mezclando las ventajas de en serie y en paralelo. El motor eléctrico será quien funcione a velocidades bajas mientras la batería sea suficiente. A mayor velocidad, el motor de combustión entrará en juego, trabajando en conjunción con el eléctrico.
  • Híbridos enchufables. Como su nombre indica se trata de un híbrido cuyas baterías (de mayor capacidad y duración) pueden recargarse enchufándolas en una toma de energía externa. Esto permite una mayor autonomía del motor eléctrico y con ello, un menor consumo de combustible. Sin embargo, se trata del tipo de híbrido menos extendido del mercado, entre otras razones por la escasez de tomas de recarga, sus altos precios de producción y un mayor precio en el mercado.

Las baterías de los coches híbridos

Las baterías de los coches híbridos son uno de los elementos clave en su crecimiento en el mercado del automóvil. También uno de los componentes de los híbridos que más preguntas generan entre los usuarios.

¿Cómo se carga la batería de un coche híbrido?

Como ya hemos comentado, existen diferentes tipos de vehículos híbridos. Por ejemplo, si hablamos de un híbrido enchufable, su batería podrá recargarse conectándose a la red eléctrica. No obstante, un híbrido no enchufable recargará su batería de manera automática al ejecutar las siguientes acciones:

  • Las frenadas. La batería de un vehículo híbrido se recarga de modo natural cuando frenamos el coche (frenado regenerativo). También aprovechando una deceleración o incluso, al bajar cuestas.
  • Recarga en carretera. Por ejemplo, en la gama híbrida de Toyota al circular por carretera el vehículo es capaz de detectar si la carga de batería es baja, utilizando la parte inactiva del motor de combustión para mover el coche y a la vez realizar la recargar
  • .

¿De qué material están hechas las baterías?

El material más usado en la actualidad en las baterías de coches híbridos son los iones de litio, las conocidas como baterías Li-Ion, muy usadas en smartphones, portátiles, libros electrónicos, etc. El funcionamiento de este modelo de baterías consiste en la presencia de la sal de litio que ejerce de electrolito para generar una reacción electroquímica necesaria para el funcionamiento del vehículo.

Las baterías de polímero de litio y de fosfato de hierro. O las baterías de litio-ferrofosfato, conocidas como litio LiFePO4 también son utilizadas hoy día para la fabricación de baterías de vehículos híbridos, habiendo desbancado al níquel y al hidruro metálico como principales materiales empleados en las baterías de híbridos.

¿Dónde van colocadas las baterías en un vehículo híbrido?

El lugar donde van colocadas las baterías dentro de un vehículo híbrido depende del fabricante y del modelo de vehículo en concreto. En los híbridos más primigenios las baterías estaban instaladas dentro del maletero, algo que restaba espacio útil a una parte tan necesaria del vehículo como la de almacenaje. Poco a poco, las marcas de automóviles fueron reubicando las baterías hasta instalarlas bajo la tapa del maletero o un espacio estratégico entre los asientos traseros y el maletero, con una conexión dirigida hacia la parte delantera para poder alimentar al motor eléctrico

¿Qué vida útil tiene una batería de híbrido?

Este aspecto es uno de los que más cuestiones genera entre los usuarios. ¿Cuánto durará la batería de un nuevo vehículo híbrido? ¿Dejará de ofrecer un rendimiento óptimo con el paso del tiempo?

Las marcas de automóviles aseguraron desde el nacimiento de los híbridos que sus baterías (no reciclables, aunque la industria de la automoción trabaja para ello) estaban diseñadas para tener tanta vida útil como la del vehículo, pero está demostrado que esto no siempre es así y que no están exentas de sufrir averías. Las garantías de los componentes, incluyendo baterías, de un coche híbrido suelen estar establecidas alrededor de los 5 años y los 100.000 o 150.000 kilómetros. Se estima que una batería puede llegar a tener una vida del doble de este kilometraje sin sufrir ningún problema.

El conductor de un vehículo híbrido puede, a través de una conducción eficiente, mejorar y prolongar el uso de la batería.

No obstante, los fabricantes de híbridos no han dejado de trabajar en este sentido, desarrollando baterías de larga duración.

Precio de un coche híbrido

¿Es un vehículo híbrido más caro o más barato que uno convencional? La respuesta es clara. Comprar un turismo híbrido es todavía más caro que un turismo tradicional. Modelos como el Toyota Prius, uno de los primeros híbridos del mercado, o el Hyundai IONIQ marcan la media de precios de un vehículo de estas características, rondando los 20.000 o 30.000 según sean sus prestaciones añadidas.

Sin embargo, las marcas de fabricantes trabajan por abaratar el precio final de los híbridos para hacerlos más competitivos en el mercado y contribuir así a una notable mejora en su coste para el usuario junto con las importantes ventajas fiscales que muchas ciudades están ofreciendo ante la compra de vehículos ecológicos.

Fuente: Fiact

Rejillas de Parrilla Activa (Active Grille)

 

A medida que avanza el tiempo y la tecnología, el diseño de los automóviles y la mejora de la eficiencia de los mismos van haciéndose cada vez más complicada. En este sentido, las marcas de automóviles se encuentran asfixiadas por las necesidades de los consumidores, la dura competencia, y las normativas y tasas anticontaminación. Por ello, se ven obligadas a invertir millones de dólares anualmente en reducir ligeramente el consumo de sus vehículos y sus emisiones contaminantes.

En este contexto de atención máxima sobre todos y cada uno de los detalles, donde cada gota de combustible cuenta, les presento hoy un artículo sobre las rejillas de parrilla activa (AGS o Active Grille Shutter), una solución puesta en práctica por multitud de marcas como BMW, Mercedes, Rolls Royce, Mazda, Honda o Ford, entre otras.

Diseño convencional de una parrilla

Aproximadamente el 20% del aire que llega a un vehículo pasa por el motor, refrigerando el mismo y colaborando a mantener su temperatura dentro de los límites correctos. Esta entrada de aire es por tanto necesaria para el motor, pero empeora la resistencia aerodinámica del coche, incrementando de forma irremediable el consumo de combustible y por tanto las emisiones de CO2.


Sin embargo, la realidad es que en el 95% de situaciones reales de conducción, el aire que le llega al motor está totalmente sobredimensionado. Esto es debido a que en todos los coches la parrilla se diseña para proteger al motor en las situaciones más desfavorables: subida de una pendiente inclinada en un día caluroso y con el acelerador a fondo, por ejemplo.

Es por ello que la necesidad de proteger al motor en estas situaciones límites hace que el diseño del mismo se realice sacrificando aerodinámica, y por tanto eficiencia y consumo del propio vehículo.

Como sabéis, la importancia de la resistencia aerodinámica a bajas velocidades es prácticamente irrisoria, pero toma una relevancia decisiva en el consumo cuando el automóvil alcanza altas velocidades.

Cómo funciona un sistema AGS o Active Grille Shut   

Se trata de un sistema capaz de controlar la cantidad de flujo de aire que llega al radiador y al motor, dependiendo de la temperatura del mismo y de sus necesidades de refrigeración. De esta forma es posible optimizar la aerodinámica del vehículo y mejorar su resistencia al avance.

Ver Video

Rejillas totalmente cerradas, resistencia al avance mínima

Cuando la temperatura del motor es moderada o baja (habitualmente inferior a 90 grados centígrados) las rejillas se encuentran cerradas. De esta el vehículo mejora su aerodinámica y reduce sus emisiones de CO2 y su consumo.

Por su parte, si la temperatura del motor comienza a subir, las rejillas se abren para dejar pasar flujo de aire hacia el interior del motor, protegiéndolo del sobrecalentamiento. Gracias a la electrónica y al uso de motores eléctricos, se permite la apertura parcial de las rejillas, ofreciendo la posibilidad de buscar puntos óptimos de las variables aerodinámica-necesidad de refrigeración.

Rejillas totalmente abiertas, necesidad de refrigeración máxima

Beneficios de la tecnología AGS

– Con el uso de esta tecnología se consiguen reducciones del coeficiente aerodinámico de hasta el 9% en los momentos de cierre completo de las rejillas.

– La reducción de la resistencia al avance puede producir mejoras del consumo del 2% en un recorrido mixto ciudad-carretera, y mucho mayores en circulación únicamente en autopista a altas velocidades respecto al uso de rejillas tradicionales (se estiman mejoras aproximadas del 4-5%).

– La reducción del consumo va ligada sin duda a reducción de las emisiones de CO2: 2 g/km aproximadamente.

– Reducción del ruido generado por el coche, debido a la mejora de su coeficiente aerodinámico. Se estiman reducciones aproximadas de 1,2 dB en las situaciones más favorables.

– Se consigue un calentamiento más rápido del motor en las situaciones de arranque en frío, debido al mantenimiento de las rejillas cerradas hasta los instantes de necesidad de refrigeración. Esta situación contribuye sin duda a llegar más rápido a los puntos de funcionamiento óptimo del motor, y por tanto a reducir las llamadas “cold start emissions”.